
A UCT Agent for Tron: Initial Investigations

Spyridon Samothrakis, David Robles and Simon M. Lucas, Senior Member, IEEE

Abstract— Monte Carlo Tree Search(MCTS) has generated a
great deal of excitement in the A.I. community, mainly due
to its success in Go. In this paper we test this approach
in Tron, a simultaneous move two-agent game. Although the
agents created are able to play to a good standard, there is a
degree of randomness in their decisions in identical scenarios.
This suggests that the success of MCTS is heavily dependent
on the suitability of each individual game for Monte-Carlo
Simulations.

I. INTRODUCTION

Throughout the history of Artificial Intelligence (AI),
games have provided a popular and challenging platform for
research. Traditionally, much of the work on AI in games
has centred on board games such as Checkers [1], Chess [2],
[3], Backgammon [4] and more recently, Go, the latter being
considered now by some researchers as a sort of “drosophila”
of AI. Such games usually have well-defined rules which
players must stick to, which eases the understanding of the
environment and allows one to focus on the creation of AI
1.

With the recent success of Monte-Carlo Tree Search
(MCTS) in Computer Go [5], [6] and General Game Playing
(GGP) [7], there has been a growing interest in applying
these techniques to other board-like strategy games. In this
paper we investigate the use of Monte-Carlo Tree Search
in the game Tron, a Snake-like two player game, where
the goal is to box the opponent and make him crash into
a wall or his own tail before you. This game was used in
the 2010 Google AI Challenge2 organised by the University
of Waterloo Computer Science Club, which consisted of
developing the best agent to play the game using any kind of
techniques in a wide selection of programming languages.

From an AI research perspective, there are many aspects
of the game worthy of study. It is interesting to see how
simulation-based methods perform against traditional game-
tree search methods, such as Minimax with Alpha-Beta
Pruning. Also, it is important to study the performance
of pure Monte-Carlo methods against more refined MCTS
techniques, such as the ones using the recently popular UCT
algorithms. In addition, in these kind of games the use of
heuristics is probably the most fundamental characteristic of

Spyridon Samothrakis, David Robles and Simon M. Lucas are with the
School of Computer Science and Electronic Engineering, University of Es-
sex, Colchester CO4 3SQ, United Kingdom. (emails: ssamot@essex.ac.uk,
darobl@essex.ac.uk, sml@essex.ac.uk).

1Videogames are rather different to this, and offer their own challenges:
the rules of the game (e.g. the exact physics model used) are not normally
known to the players the game objectives are usually not so clearly defined
(e.g. for an NPC the objective might be to make the game as fun as possible
for the player), and the game worlds are typically much larger and more
open-ended.

2http://csclub.uwaterloo.ca/contest/

the top agents, and since the goal of this work is to study the
use of MCTS we see how this techniques perform against
agents with very sophisticated heuristics.

The rest of the paper is organised as follows: in Section
II we review the game play of Tron, Section III provides
the necessary background, Section IV proposes a general
methodology for applying UCT, section V describes the
experiments and Section VI provides a summary and con-
clusions.

II. THE GAME OF TRON

The film Tron was released in 1982 by Walt Disney
Studios. It features a game in a virtual world where two
futuristic motorcycles move at constant speed, making only
right angle turns and leaving solid wall trails behind them.
As the game advances, the arena fills with walls and even-
tually one opponent dies by crashing into a wall (see figure
1). The game became very popular and was subsequently
implemented on various hardware platforms.

Fig. 1. Tron Game: The players try out-manoeuvre each other

A. Tron Game Play

Tron is played on a M by N grid of cells in which each
cell can take two possible states: empty or occupied (wall).
The game begins with two players located on empty cells of
the grid. At each time step t of the game both players are
asked simultaneously to move in any of the four directions:
north, south, east or west. If the player moves to an empty
cell, that cell becomes a wall. As the game advances, the grid
progressively fills with walls and eventually one opponent
crashes, thereby ending the game.

To explain in greater detail, the model calls both agents at
each of a sequence of discrete time steps, t = 0, 1, 2, 3, At
each time step t both agents receive a full representation of
the model’s state, st ∈ S, where S is the set of possible states

978-1-4244-6297-1/10/$26.00 c©2010 IEEE 365

and on that basis selects an action, ap,t ∈ Ap(st) where
Ap(st) is the set of actions available in state st for player
p. One time step later, as a consequence of their actions,
the agents find themselves in a new state, st+1. Figure 2
diagrams the agent-model interaction.

Fig. 2. The agent-model interaction in Tron.

An example of the possible actions that an agent can take
in a given situation is depicted in figure 1. In this example
the state of the game is on time step 20, s20, in which the
agent’s action set are:

A1(s20) = {south, east, west}
A2(s20) = {north, east, west}

If one of the agents chooses an action that is not part of
the respective set of actions, Ap(s20), the player will crash
to a wall and will lead to a loss, or a draw, in the case where
the opponent crashed as well.

All the maps used for this research are enclosed by walls,
preventing any wrap-round or toroidal grids (i.e. players
cannot move and reappear on the opposite side). As might be
expected, there are three possible results for a player: win,
loss or draw. A player wins when only the opponent crashes
against a wall, and draws when both players crash at the
same time step. Therefore, the overall general strategy is to
try to box the opponent into a small area while your bot can
roam the rest of the board. However, to achieve this overall
goal more specific strategies must employed.

III. BACKGROUND

A. Previous Work on Tron

Tron has been used previously as a testbed for research
in different domains. Funes et al. [8] used the Internet
as a virtual ecosystem, i.e., a community of human users
and artificial environments where complex phenomena takes
place. They built a coevolutionary environment with a Java
implementation of Tron, that matched artificial agents against
human Internet users. Using robot vs. robot coevolution in a
background server, the fittest artificial agents were selected,
which in turn played against human players and kept on
evolving. One of the drawbacks of using the humans for
fitness was the slow interaction between robots and players,
since only a few hundred games took place every day. Also,

agents had only limited sensory perception, whereas human
players where able to observe the entire state. Apparently this
prevented the evolution of better strategies, and it would be
quite interesting to see how the agents would have evolved
taking into account the entire state of the map.

Later on, Blair et al. [9] used the same coevolutionary
system evolving neural network players. The Tron agents
used a three-layer neural network with 8 inputs for each
sensor, 5 hidden-units, and three outputs for each of the
possible moves. The MLP was trained using an evolutionary
hill-climbing algorithm in which the top MLP is engaged in
a contest by a variety of mutant networks until one defeats
it. According to their results, two of the evolved agents
displayed common strategies, such as trying to fill the map
twisting around a fixed centre point from the edges and
progressively moving downward. This strategy decreases the
space available for the opponent to move. Also, one of the
agents evolved to be extremely aggressive, moving swiftly
around the map in an apparently deficient behaviour seeking
for opportunities surround the opponent with walls. On the
other side, another player evolved to be quite defensive,
progressively moving toward the outside in a narrow spiral
fashion. Also, another player displayed a versatile behaviour.
At the beginning it makes early mistakes, but quickly learns
a defensive strategy, and gradually masters an offensive skill
to confine its opponent. The top evolved players were tested
against a selection of high quality GP agents with a variety
of strategies produced in their previous work [8] and seemed
to perform relatively well, although it is hard to conclude
how effective the strategies are in an objective way.

Funes and Pollack [10] continued their work on [8], by
analysing the performance of Tron agents evolving vs. human
players with the application of a statistical method similiar
to chess and Go “ELO” ratings. This allowed a comparison
of all individual players with each other, even when it is
possible that they have never played together. The results
showed that the difference between the top group of human
players and the top agent players is about 60%. Seven out
of the best 15 players are agents. They concluded that Tron
is partially learnable by self-play, and that a few very good
agent players managed to survive. Moreover, the variance
in skill level between different evolved top players proved
insufficient, as the top agents were not so effective against
humans.

B. UCT and Monte Carlo Tree Search

UCT(which stands for Upper Confidence Bound in Trees)
is an algorithm from the Monte Carlo Tree Search family
of algorithms. The idea behind Monte Carlo algorithms in
Artificial intelligence (A.I.) is that the approximation of
future rewards (as the are understood in the Markov De-
cision Process(MDP)[11]) can be achieved through random
sampling. What this effectively means is that the agent
extrapolates to future states in a random fashion and moves
to the state with the highest predicted rewards. MCTS tries to
rectify some of the issues that come with such an approach by
combining it with a tree and effectively creating a stochastic

366 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

form of best-first search. From a game theoretic perspective,
the tree is a subtree of the game tree in extensive form[12].

UCT (presented in Algorithm 1) takes the ideas of MCTS
and pushes one step further by defining the number of Monte
Carlo simulations that need to take place before we can say
with confidence that we have seen enough from a possible
move. Thus, it combines MCTS with ideas borrowed from
the multi armed bandit[13]. Each node in the tree is seen
as multi-armed bandit problem. The goal of the search is to
“push” more towards areas of the search space the seem more
promising. Although there are slightly different versions of
the algorithm, the one presented in [14] is most commonly
used. The algorithm(see figure 3 can been summarised as
follows; Starting from the root node, expand the tree for a
single node. If the node is a leaf node, give it a value and
back-propagate the node value to the nodes that have been
rolled out already. If the node is not a tree node, and has not
been visited before, perform a Monte Carlo search for this
node, and back-propagate as normal. The most commonly
used back-propagation strategy is one that makes direct use
of the underlying tree, e.g. for a minmax(negamax) tree, that
would include subtracting or adding the result depending on
who is the owner of the each node in the list(for an example
see Algorithms 1,3,4,2, taken from [14]).

Fig. 3. A sample UCT search

In case all possible nodes have been visited, a common
way to distinguish which node to explore further is to assign
a value to each node based on the Chernoff-Hoeffding bound.
This leads to what is known as the UCB1 policy[13]. Play
arm j that maximises

x̄j + C

√
ln(n)
nj

(1)

The symbols x̄j in equation 1 denotes the average reward
from the underlying bandit, and it is the exploitation part of
the algorithm. The second part of the above equation is the
exploration part. C is a constant (usually set to

√
2)[13], n

is the sum of all trials and nj is the number of trials for the
j bandit. Finally,

∑j=jmax

j=0 nj = n.
The equation to choose which arm to play (in the case of

a tree search which child to follow) can be heavily tuned de-
pending on the underlying distribution. UCB1(see Algorithm
3 for the pseudocode) should be seen as the “lowest common
denominator’ policy. If no information about the bandits is
available to us, this is probably the correct policy to use. On
the other hand, once we have collected enough information,
more informed policies are bound to do better.

Algorithm 1 playOneSequence(rootNode)
node[0] ← rootNode
i ← 0
repeat

node[i+1] ← descendByUCB1(node[i])
i← i + 1

until node[i] is visited for the first time
createNode(node[i])
node[i].value ← getValueByMC(node[i])
updateValue(node, -node[i].value)

Algorithm 2 getValueByMC(node)
// perform a random game until completion, return reward.

Algorithm 3 descendByUCB1(node)
nb ← 0
for i ← 0 to node.childNode.size() - 1 do

nb ← nb + node.childNode[i].nb
end for
for i ← 0 to node.childNode.size() - 1 do

if node.childNode[i].nb = 0 then
v[i] ← ∞

else
v[i] ← 1.0 - node.childNode[i].value /
node.childNode[i].nb + sqrt(2 * log(nb) /
(node.childNode[i].nb)

end if
end for
index ← argmax(v[j])
return node.childNode[index]

Note that events in a tree are not independent, so algo-
rithms that would naturally work for bandit problems need
some adaptation when applied to tree search. Advantages of

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 367

Algorithm 4 updateValue(node, value)
nb ← 0
for i ← node.size() - 2 to 0 do

node[i].value ← node[i].value + value
node[i].nb ← node[i].nb + 1
value ← 1.0 - value

end for

UCT include the fact that it explores the tree asymmetrically
and that it gives a natural account for uncertainty.

C. UCT in Games

The popularity of UCT stems primarily from the fact
that it revolutionised computer GO[14]. Its success lead
to widespread acclaim of Monte Carlo methods, eventu-
ally reaching popular media[15]. A key characteristic of
all go implementations of UCT (CRAZY STONE[16],
MANGO[17], MOGO[14] and FUEGO[18]) is the use
of local patterns to guide the Monte Carlo simulations. Gelly
et al[14] report a big boost compared to purely random
methods(from 1647 to 2200 ELO).

As a result, UCT has been applied already to a big number
of games[19], [20], [21]. For the most part, the non-GO
papers failed to replicate the burgeoning success of UCT
in GO. The area that was identified for improvement[19]
was mostly around the concept of doing good Monte Carlo
simulations. Being a best-first search, UCT relies heavily on
quality of Monte Carlo simulations, and its performance is
greatly affected by them.

A big issue with the non-GO implementations of UCT
is the lack of comparison with the state of the art. As a
consequence there is no way of understanding how well UCT
did compared to other methods.

Finally it is worth noting here that UCT is currently very
successful in General Game Playing (GGP) [7], a domain
that practically prohibits the use of strong heuristics. This is
truly important as it signifies that UCT might be used as a
generic A.I. technique (at least in the case were a perfect
model is available to the agent).

IV. METHODOLOGY

A. Applying UCT

There has been no “standard” process for applying UCT,
so we are proposing an empirical four step process. The
first step is to understand the number of agents and the
information content of each game and choose the right tree.
For games of complete and perfect information(e.g. chess,
GO), a min-max tree is commonly used. For games of
complete but imperfect information(ex. backgammon), ex-
pectimax trees should be used. Finally for games of imperfect
and incomplete information(ex. poker), miximax trees were
recently introduced[22].

The second step is understanding the underlying distribu-
tion of each arm and tuning the policy equation. This can
be done in a number of ways, which can range from tuning

equation 1, to completely replacing it with something that
captures the underlying probabilities better.

The third step is to come up with a back-propagation
policy.

The final step is to augment the algorithm with knowledge
and/or ”guide” the Monte Carlo simulations. In Go this
is achieved by using local patterns[14], which significantly
improves the quality of the simulations.

In this paper we follow a minimalist approach to all these
steps, as we would initially like to see the behaviour of
MCTS/UCT for playing Tron in a near-default setting.

B. UCT and Tron

Tron lends itself naturally to a min-max version of UCT.
Although a simultaneous move game, it can be transformed
into an alternate moves games by assuming that in each
player’s tree node the current player plays always first. Monte
Carlo simulations are easy to implement in this setting.
Rewards are provided in a simple fashion, with 1.0 for a
victory, 0.5 for a draw an 0.0 for a defeat. Value back-
propagation (presented in 3) is simply the mean number for
the tree part below.

A very simple form of local search is performed in the
Monte Carlo simulation, players cannot play games that
result in self-entrapment within one move, as shown in
figure 4. This is a minimal form of guiding the searches.

Fig. 4. Player one cannot move north in an MC simulation, a certain lose
move

In order to help our agent further, we also switch to
“survival mode” when the agents are separated through a
wall. The separation of the agents turns the game into single
player game similar to “snake”. In this mode, the min-max
tree is replaced by a simple tree. In this case, with l being the
number of free blocks, the reward function becomes r = 1/l.
Please note here that finding the longest path is probably an
NP-Hard endeavour that necessitates the use of heuristics in
very large maps.

V. EXPERIMENTS

These experiments were designed to gain insight into how
“thinking time” (i.e. the time an agent spends for each move)
impacts the quality of the agent. In order to achieve this we

368 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

have devised three different maps (see fig.5). Each map has
a different set of qualities that make it suitable for such a
task. All maps are of size 15x15. Player one changes with
each experiment while player two is the “master player”. The
“master player” always uses UCB1 and has one 1 second do
think for every move. In our implementation, the uct values
in the tree are cached from state to state (i.e. the information
gathered from a state through previous simulations is not
discarded). In all cases, the move selected is the one that
has the higher number of visits (there are alternatives, but it
seemed it did not matter in our case).

Fig. 5. The three maps used in our experiments, Map A, map B and Map
C respectively (left to right)

A. Maps
1) Map A: The importance of map A lies in the fact that

it should make it hard for a random rewards regime to get
any information out of it. While the solution to the problem
is obvious to a human player, a random reward agent should
have trouble recognising where to move, as it practically
has to reach endgame positions with both players playing
perfectly before it can see any potential value moving left or
right.

TABLE I
PAYOUTS FOR MAP 1

Player Two Right Player Two Left
Player One Right (1,0) (0,1)
Player One Left (1,0) (0.5,0.5)

It is obvious from table I that the correct first move for
our agent is moving to the left. It is not the more exploitive
move, but it in this case it is the optimal move.

2) Map B: Map B is the equivalent of a chess “checkmate
in x moves” problem. In this scenario, player one can always
win if it plays right. The goal here is to leave the “cage” that
surrounds him and try to actively block player 2.

3) Map C: Map C is the “open field” map and closer to
what an agent might encounter towards a real world game.

B. Agents
In our experiments we compare three different agents.

The first one is configured with with the classic UCB1
policy presented above. For the second one we use a UCB-
TUNED[13](see equation 2), which seems to be fairly com-
mon in the literature

x̄j +

√√√√ ln(n)
nj

min

{
1/4, x̄2

j − x̄j
2 +

√
2ln(n)

nj

}
(2)

Our third agent is a modification of the UCB1 strategy
presented by Coquelin, P.A. and Munos, R.[23]. We call this
strategy UCB-E.

x̄j + C

√√
n

nj
(3)

The above equation 3 pushes towards more exploration

C. Experiment 1: UCB1

In this first experiment we compare agents based on UCB1
with each other. For each of the maps with play 20 games
between our “master player” and test players. The Master
player is the disadvantaged player in Map 2. It’s thinking
time is 1000ms. The test players are identical to the master
player, but their calculating time varies from 100ms to
900ms, with 50ms increments. The score accumulated for
each player is s = 0.5 ∗ nDraws + nWins.

Fig. 6. Score of agent UCB1 for each map

The results in figure 6 are somewhat surprising. While in
map B can see that the best test player wins 17/20 times, it is
obvious that the agent cannot achieve perfect performance.
Results for Map A and C show a random trend, with no clear
advantages as more thinking time is provided to the agent.

Fig. 7. Scores of agent UCB-TUNED for each map

D. Experiment 2: UCB-TUNED

The UCB-TUNED strategy has been used in GO[14]
and OTHELLO[20]. Overall it performs slightly worse than
UCB1. This strategy is overall more exploitive/optimistic
than UCB1, which seams to hinder its ability to search for

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 369

good solutions on Map B(see figure 7). In the other hand, it
seems to be doing better (although this is debatable without
further statistical analysis as the results are too close) on Map
A, possibly because it reaches deeper nodes in the tree.

E. Experiment 3: UCB-E

This strategy pushes towards more exploration. It is af-
fected more by the thinking time than the other two strate-
gies, as it explores the tree more thoroughly.

Fig. 8. Scores of agent UCB-E for each map

In figure 8 we can see that it starts off somewhat worse
than the other two strategies, but as more thinking time is
provided, it seems to do as well as the other two. The shortest
tree search (less exploitation) seems to have trouble doing
well on Map A,were reaching deep in the tree is crucial.

F. Experiment 4: 10s UCB1 Opponent

Finally, we used the most successful strategy from above
for doing a final run. We let the UCB1 agent peform for
10 seconds against the “master” player used in the previous
examples. The scores are not impressive (although somewhat
better, see figure 9), meaning that although there is an
improvement the 900ms agent is close to convergence. The
scores for this agent can be found in table II.

TABLE II
SCORES FOR 10 SECONDS PLAYER

Board A Score Board B Score Board C Score
UCB1 8.5 19.5 12.5

G. Experiment 5: Tron Competition

A slightly modified version of UCB1 has competed in
the U of Waterloo Tron Competition, achieving a rank of
109/750(approx). The winning entries were based mostly on
min-max with excellent leaf evaluation functions3. Monte
Carlo approaches overall did poorly, with positions ranging
from 25 to 200. As far as the authors are aware the best UCT
approach removed the Monte Carlo simulations completely
and used a heuristic function instead, while keeping the best
first search UCT exploration of the tree4. This arguably goes

3http://www.a1k0n.net/blah/
4http://csclub.uwaterloo.ca/contest/forums/

viewtopic.php/?f=8&t=361&start=10

Fig. 9. A comparison of the averages for each UCT heuristic alongside its
smoothed version

against the “spirit” of MCTS but it might prove to be the
right path if there is no effective way of guiding the Monte
Carlo simulations.

VI. CONCLUSIONS

MCTS/UCT is attracting significant attention from the
AI and games research community. It is therefore of great
interest to gain a better understanding of when it succeeds
and fails and for what reasons. We compared three different
variations of UCT using three different carefully chosen
boards in the Game of Tron. From the results one can clearly
see that UCT works sufficiently well but its straightforward
version is heavily dependent on the quality of the Monte-
Carlo simulations. In some cases a large number of simu-
lations are irrelevant, pointing UCT to explore completely
ineffective branches. An interesting future research direction
would be to try to extract features from the game, and use
them to guide the search.

ACKNOWLEDGEMENTS

This research is partly funded by a postgraduate stu-
dentship from the Engineering and Physical Sciences Re-
search Council. We would also like to thank the University
of Waterloo computer science club for setting up the Tron
Competition.

REFERENCES

[1] A. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal on Research and Development, vol. 11, no. 6,
pp. 601–617, 1967.

[2] C. Shannon, “Programming a computer for playing chess,” Philosoph-
ical Magazine, vol. 41, no. 4, pp. 256–275, 1950.

[3] M. Campbell, A. J. Hoane, Jr., and F. Hsu, “Deep blue,” Artificial
Intelligence, vol. 134, pp. 57–83, 2002.

[4] G. Tesauro, “Temporal difference learning and TD-gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[5] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Proceedings of the 5th International Conference on
Computers and Games (CG2006), 2006, pp. 72–83.

[6] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modifications of uct
with patterns in monte-carlo go,” INRIA, Tech. Rep. 6062, 2006.

370 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

[7] Y. Bjornsson and H. Finnsson, “Cadiaplayer: A simulation-based gen-
eral game player,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 1, pp. 4–15, 2009.

[8] P. Funes, E. Sklar, H. Juillé, and J. Pollack, “Animal-animat coevolu-
tion: Using the animal population as fitness function,” in Proceedings
of the Fifth International Conference on Simulation of Adaptive
Behavior, 1998, pp. 525–533.

[9] A. D. Blair, E. Sklar, and P. Funes, “Co-evolution, determinism
and robustness,” in SEAL’98: Selected papers from the Second Asia-
Pacific Conference on Simulated Evolution and Learning on Simulated
Evolution and Learning, 1999.

[10] P. Funes and J. Pollack, “Measuring progress in coevolutionary com-
petition,” in Proceedings of the Sixth International Conference on the
Simulation of Adaptive Behavior, 2000, pp. 450–459.

[11] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
15th European Conference on Machine Learning (ECML), 2006, pp.
282–293.

[12] E. Rasmusen, Games and information: An introduction to game theory.
Blackwell Pub, 2007.

[13] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2, pp.
235–256, 2002.

[14] S. Gelly and Y. Wang, “Exploration exploitation in go: UCT for
Monte-Carlo go,” in Twentieth Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2006). Citeseer, 2006.

[15] R. Blincoe, “Go, going, gone?” The Guardian, 2006.
[Online]. Available: http://www.guardian.co.uk/technology/2009/apr/
30/games-software-mogo/print

[16] R. Coulom, “Computing elo ratings of move patterns in the game of
go,” in Computer Games Workshop. Citeseer, 2007.

[17] G. Chaslot, M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy,
“Progressive strategies for monte-carlo tree search,” New Mathematics
and Natural Computation, vol. 4, no. 3, p. 343, 2008.

[18] “Fuego - an open-source framework for board games and
go engine based on monte-carlo tree search,” University of
Alberta, Dept. of Computing Science, TR09-08, Tech. Rep., April
2009. [Online]. Available: http://www.cs.ualberta.ca/TechReports/
2009/TR09-08/TR09-08.pdf

[19] F. Van Lishout, G. Chaslot, and J. Uiterwijk, “Monte-Carlo Tree Search
in Backgammon,” in Computer Games Workshop, 2007, pp. 175–184.

[20] P. Hingston and M. Masek, “Experiments with Monte Carlo Othello,”
in IEEE Congress on Evolutionary Computation, 2007. CEC 2007,
2007, pp. 4059–4064.

[21] G. V. den Broeck, K. Driessens, and J. Ramon, “Monte-carlo tree
search in poker using expected reward distributions,” in ACML, 2009,
pp. 367–381.

[22] D. Billings, A. Davidson, T. Schauenberg, N. Burch, M. Bowling,
R. Holte, J. Schaeffer, and D. Szafron, “Game-tree search with
adaptation in stochastic imperfect-information games,” Lecture Notes
in Computer Science, vol. 3846, pp. 21–34, 2006.

[23] P. Coquelin and R. Munos, “Bandit algorithms for tree search,” Arxiv
preprint cs/0703062, 2007.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 371

